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Test of a numerical approach to the quantization of billiards
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A method for computing large numbers of eigenvalues of self-adjoint elliptic operfato@omput. Phys.
184, 321(2003] is tested in numerical studies of the spectral properties of quantum billiards. To this extent,
we study a time-reversal invariant quantum billiard of threefold symmetry, that undergoes a transformation in
its symmetry properties frort,, to C;. Thereby a transition from Gaussian orthogonal to Gaussian unitary
ensemble statistics is observed, verifying earlier experimental indications and theoretical predictions. At the
same time our numerical ansatz is shown to be applicable to arbitrary billiard shapes.
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I. INTRODUCTION guish between true eigenvalues and the unavoidable spurious

eigenvalues and discretization artefacts. Approximately one

The properties of quantum systems whose classical coufpoysand levels were obtained for each symmetry class,
terparts possess a chaotic dynamics have been studied exi¢Rareby revealing a small deviation of the spectral statistics
sively in billiards. These model systerfi§ have been inves-  from the expected random matrix theory behavior, which can
tigated numericallysee, e.g., the references listed under Refy,e nderstood in terms of classical periodic orbits. In Sec. Il
[2]) as well as experimentally, e.g., with microwave cavities,ye il shortly review the theory and the results relevant for
[3-5]. In such analog experiments with superconducting Miyhe ynderlying billiard problem. Then we will introduce the
crowave resonators complete sequences of typically aboyfmerical method used for the quantization of the billiard in

10° eigenvalues are obtaind8]. Their analysis confirmed gec |j and finally present the results of the statistical analy-
the conjecturg6] that chaos manifests itself in certain ge- gis of the calculated eigenvalues in Sec. IV.

neric properties of the quantum spectral fluctuations, which
can be modeled by random matrix thedrg]. While the
spectral properties of time-reversal invariant systems without
spin and Kramers degeneracies are well described by the An areaA in which a pointlike particle moves frictionless
random matrices of the Gaussian orthogonal ensemblglong straight paths until it hits the boundatf, where it is
(GOB), time-reversal violation requires a description by reflected according to the common law of reflection, is called
Gaussian unitary ensemb(&UE) matrices. Following the a two-dimensional billiard. Whether its classical dynamics is
predictions by Leyvraz, Schmit, and Selign{@&we study a  regular, chaotic, or mixed only depends on the shape of the
transition from GOE to GUE statistics in a billiard that un- billiard. In quantum mechanics a billiard is described by the
dergoes a transformation in its symmetry propeff§from  stationary Schrédinger equation for a free particle, that can
C3, to C5. The attempt of Ref.10] to study this phenomenon be written in the form

experimentally with the help of a normal conducting micro- )

wave resonator posed problems, as it was not possible to (A+k)¢=0 (1)

assign the correct symmetries to the levels. In correspondingii, k2=2mE /42, wherem is the mass of the particle ang
| 1

experiments with superconducting devices such assignments, e genote eigenfunctions and eigenenergies, respectively.
are possible11], however, parametric deformations of the ¢ eigenfunctions must satisfy the Dirichlet boundary con-

shape of a billiard boundary are difficult to realize experi-yition i.e. #il.a=0, which together with Eq(1) defines the

mentally. Hence a numerical study of the transition fromy,ohjem to be solved. Equatida) is also referred to as the
GOE to GUE in such systems is of great interest. The billiardy.51ar Helmholtz equation, as it describes the electromag-

considered in this work is nonconvex and has a hole at ityafic fields inside a flat microwave resonator that represents
analog system for a quantum billiard of corresponding

II. THEORY

center, i.e., a second boundary. Thus its numerical treatme

is nontrivial. We chose this problem as a test of a differenign a3 For comparison with experimental results obtained
numerical technique for computing large numbers of eigeny, microwave resonators we express the numerical eigenval-

values of self-adjoint elliptic operatofd2]. The method is | og k as electromagnetic eigenfrequencigs=w,/2m

based on the finite element method and has almost no ”miiclqlzm wherec is the speed of light.

tations with respect to the shape of a billiard and, e.g., allows s study a billiard of the shape shown in Fig. 1. Its clas-

the study of bounded domains with holes. Compared to othefjca| gynamics has turned out to be chaotic, except for a few

methods relying on the finite element method it can distinyeiogic orbits that will be discussed below. The billiard has

an outer and an inner boundary which both possess threefold
symmetry. The two boundaries are rotated against each other
*Electronic address: richter@ikp.tu-darmstadt.de by an anglea. For a#0 the only symmetry isCs, i.e.,
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integral method, and their variarts6]. The main drawback

of these approaches is the difficulty, if possible at all, to treat
general domains, especially domains with re-entrant corners
or with holes. We tested a numerical methdd] that can
give complete sequences of large numbers of eigenvalues for
an arbitrarily shaped billiard beginning from the ground state
with a high numerical precision.

A. Numerical method and its properties

The considered method relies on a basis diagonalization.
Localized basis function§piecewise polynomial functions
100 mm are used, thereby yielding sparse matrices. Taking advantage
of that sparsity pattern as well as of the elliptic properties of
FIG. 1. Shape of the billiard. When rOtating the inner bOUndarythe Lap'ace Operator, we solve the resu'ting genera”zed ei-

from a=0 to «+#0, a transition of the symmetry properties from genyalue problem by means of a highly efficient multigrid
Cg, to C3 is induced. The dashed line shows a periodic classicaljyathod.

orbit that is nonchaotic and that influences the spectral properties of The starting point for the numerical calculations is the

the quantum system. discretization of Eq.(1) by means of the finite element

method. This leads to a self-adjoint generalized eigenvalue
"pure” threefold symmetry. liv is set to zero, there are mir- problem of the form

ror symmetries and one speaks ©f, symmetry. The two

boundaries can be parametrized in polar coordinétes) Ayl =\IM, i=1,...n, (4)
by whereh e R, is the discretization parametek” e R™" (re-
_ .0 spectivelyM" e R™") represents thetiffness(respectively
r =r 1+0.3co 2
outel #) = Fouel 8] @ mas$ matrix, and\! is the approximation of the eigenvalue
and \i=k? (see, e.g., Refl17]). The sparsity pattern oA and

M" leads to memory requirements which behave [i@).
Under usual assumptions on the finite element discretization
with r8,,=100.00 mm and? .=27.27 mm. By tuning the (see Ref[18]), the discretization error satisfies

value of the angler one can study the effect of the transition A=\ < C\p20-D 5)

from Cs, to C; on the properties of the spectra. According to b : '
the predictions by Refl8] these properties should show a where(I-1) is the polynomial degree of the finite element
transition from GOE to GUE statistics. While in similar stud- shape functions. This error bound indicates that for a given
ies of GOE-GUE transition$13] time-reversal invariance triangulation the accuracy of the higher eigenvalues deterio-
was broken by magnetic fields, in our case a change of theates with the coefficient!. The accurate determination of a
shape of the billiard boundary induces the GOE-GUE tranfarge number of eigenvalues relies therefore on much finer
sition, as already suggested in RE8]. The authors of Ref. discretization of Eq(1) than for the computation of a few

[8] showed that a chaotic quantum billiard with symmetry  eigenvalues.

has a spectrum consisting of sing(aondegenerajeand The considered method which is described in R&g]
double(degenerateeigenvalues. The degeneracies are due t@llows to compute then smallest eigenvalues in E(l) with
time-reversal invariance and these so-called Kramers douhe optimal complexity of0(mn) arithmetic operations and
blets are known to show GUE-like statistical fluctuations,Q(n) memory requirements. Notice that in practice<n
while the single eigenvalues possess the common GOE proge to thea priori error estimatioEq. (5)). Our approach is
erties[8,11,14. However, in the presence of additional sym- pased on the symmetric Lanczos metti@€]. The Lanczos
metry axes(Cs,), one also expects GOE statistics for the recursion leads to a tridiagonal matrix for which all eigen-
degenerate mod¢8]. As the nondegenerate modes o€  values can be computed by means of a bisection method with
billiard may have odd or even parity with respecttbof the  O(m) arithmetic operationgsee, e.g., Ref[19]). The rel-
three mirror axes, the spectral properties of the single eigensyant eigenvalues of the problem given by E4).are in the
values should rather coincide with those of aSUperpOSition %Wer part of the Spectrum_ In order to obtain the conver-
two independent GOE spect(aee also Refd.15,31)) than  gence towards these eigenvalues we therefore consider the
with those of a single GOE spectruro0]. following spectral transformation:

IFinner(d’) = rﬁmer{l +0.1 COES((f’ +a)]} (3

IIl. NUMERICAL SIMULATION [(Ap= oMy ™M ] = %zﬂﬂ (6)
N -0

The numerical eigenvalues were obtained with the help of '

a method that is described in R¢12] in detail and that is The operator(A,—oMy) "My, is nonsymmetric but self-
applied here. Many other methods have been developed idjoint with regard to the inner product, '>Mh' Therefore
this context. The most common approaches are based on thtee Lanczos method remains valid provided it relies on this
scattering approach, the finite element method, the boundascalar product.
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100 ———— sumed maximum splitting of the doubldt&ig. 2). The result
gof 2= 3 is convincing as we can vary the value taken for the maxi-
S eob 1 mum splitting by several orders of magnitude without chang-
2 b ing the relative fraction of one half for singlets and doublets.
% 40¢ 1 Thus we can separate the eigenvalues in subspectra of the
2 ook 1 same size.
1%‘12 107" 107

Relative Masimum Splitting IV. STATISTICAL ANALYSIS AND TRANSITION
FROM Cj, TO Cy

FIG. 2. Percentage of doublets as a function of the assumed . . . .
maximum doublet splitting, shown for the=0 case. As one can Before analyzing the statistical properties of the eigen-

see it is possible to vary the parameter taken for the maximuny@lue sequences we have to unfold the spectra, i.e., to extract
splitting from 10°2° up to 105, i.e., by five orders of magnitude, the mean Ieve_l Qensny and to appropriately rescale the level
without changing the singlet and doublet subspectra. This indicate§Pacings. By fitting the Weyl formul25],

that the numerical lifting of the degeneracies is extremely small A U

compared to the smallest eigenvalue spacings. Neyi(f) = c_;sz - Z:f +K, (7)

The most time consuming part of the proposed method iso the "staircase” function
the resolution at each step of the Lanczos iteration of the
linear system involved in EJ6). Due to the elliptic charac- N(f) = 2 O(f -f) (8)
ter of the considered operator we apply multigrid methods i

for the step which allows to solve such linear systems witQhe coefficients, U, andK can be determinett denotes the
CPU and memory costs which behave Ii@en) (see, €.9., speed of light We perform this procedure for the subspectra
Refs.[20,21)). For increasingm, due to rounding errors, a of singlets and doublets, respectively, tiisind U are not
loss of global orthogonality leads to so-callspuriousei- e area and the perimeter of the billiard, respectively, but
genvaluegsee, e.g., Ref19]). Beside the multigrid method, |g|ated to them. With the transformation

one of the cornerstones of the method is the ability to control

a posteriori the validity of the computed eigenvalues and to fi — & = Nyey(f;) (9
distinguish the true approximated eigenvalues from the d'SWe obtain unfolded spectfa}, that possess a constant mean
cretization artefacts and the spurious eigenvalues. The treat- .

ment of this issue is based on extrapolation techniques Whicﬁ:fgoermlstliléi Sﬁatﬂgi r:;?g:ef?ué?u;?é?’ E(;Jtesr;cilgscontam the
are described in more detail in Refd2,22. P prop :

These spectral fluctuation properties are evaluated on
short scales as well as on long scales. On short scales the
nearest-neighbor-spacings distributiddNSD), i.e., the sta-

Our calculations were performed on 64 nodes of thetistical distributionP(s) of the spacingss=¢.1—¢€;, IS uti-
Heidelberg Linux Cluster SystefHELICS). Each node con- lized to measure the spectral properties of the unfolded ei-
sists of two AMD Athlon 1.4-GHz processors which sharegenvalue sequences. On larger scales we analyze the data
2 gigabytes memory. The size of the eigenvalue problem Equith the help of the Dyson-MehtéA;) statistics[7,23,24,

(4) had been set ta=1.5 Mi. for all considered configura- which gives a measure for the spectral correlations in inter-
tions. This allowed to compute accuratehy 3000 eigenval-  vals of lengthL. In order to compute thA statistics for the
ues with regard to the discretization error. The needed CPUhrge sets of eigenvalues we use the method given in Ref.
time for each configuration was approximately 6 h. [24].

We have computed spectra of approximately 3000 eigen- Figure 3 shows the NNSDs for the singlet and doublet
values{f;} for three different configurations of our billiard spectra of the three billiard configurations studied numeri-
(@=0°, @=1.7°, =10°). For the given dimensions of the cally. For «=0° the NNSDs show agreement with GOE be-
billiard, these spectra correspond to the frequency rangkavior for singlets and doublets. However, in the case of the
from 0 GHz to approximately 54 GHz. Our numerically ob- singlets the distribution is close to the behavior expected for
tained spectra are indeed composed of sindletsdegener- a superposition of two independent GOE sequences, which
ate eigenvalugsand doublets(twofold eigenvalues The  reflects that the singlets possess odd or even parity. Thus for
relative splitting of the degenerate eigenvalddé¢f lies be-  «=0° the statistical properties coincide with the predictions
tween 10° and 10°. For the topmost levels the numerical for the Cs, case. Fore=10° the NNSD is compatible with
splittings are larger, accordingly we omit the last 300 levels GOE statistics in the case of the singlets and with GUE sta-
Moreover, we skipped the first 600 levels in each spectrumtistics in the case of the doublets, as expected. dhé.7°
since we are interested in semiclassical properties. We uteonfiguration shows a similar behavior, thus we resolve the
lized the (extremely sma)l numerical doublet splitting as a slight breaking of the mirror symmetries within our numeri-
tool for separating the remaining 2100 levels into subspectraal accuracy.
of singlets and doubletsimilar to Ref.[14]). To this end we For the Dyson-Mehta statisti¢Eig. 4) there is agreement
studied the percentage of doublets as a function of the asvith the expected behavior far=0° (Cs,), whereas fora

B. Performed calculations
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FIG. 3. Nearest-neighbor-spacings distributigN§ISDs of the FIG. 4. Long-range correlations of thmlculated spectra for
spectracalculatedfor the three different configurations of the bil- three different configurations of the billiaithick lines. The thin,
liard (histograms The full lines and the dashed lines mark the full, and dashed lines mark the theoretical predictionsGgr and
theoretical predictions fo€,, and C; symmetry, respectively. For Cs symmetry, respectively. For the limiting casest0° the A3
all cases the results coincide with the predictions:dfei0° one has ~ statistics coincides with the predictions for tlg, case. In thex
two superimposed GOE spectra for the singlets and a GOE spe&1.7° case and also far=10 the statistics deviates from the the-
trum for the doublets. The other configurations show GOE statistic®retical predictions foCz; symmetry.

for the singlets and GUE behavior for the doublets. )
these peaks from the length spectrum, and then obtain the

fluctuating part of the level density with the bouncing ball

=1.7° and fore=10° the results are intermediate in between " . ; .
the limiting cases expected f@;, and C; symmetry. How- orbits extracted b_y an Inverse Fourer tr_ansforma{m Eq.
3 3 ) a(_10)]. The resulting statistical properties are—all in all—

ever, the_se deviations observed. for th_e long-range corre_l closer to the theoretical predictioriEig. 6). However, the
tions (which are often more sensitive with respect to certain

subtle effects than the NNS[2an be understood in terms of agreement is slightly worse far=0.

; L ; . We thus see a transition of the statistical properties due to
I(:elszlsg::rlgi?l??)lgglr\kljllfj%Bi\%Zlé Ihheelgr?utrée; treacr;rsjtf)ér;_%fqthe symmetry breaking: from GOE to GUE in the case of the
: b= 9 gih sp ' doublets and from the two superimposed GOE to a pure
€., GOE in the case of the singlets. The latter kind of transition

f

max 21X
I(x) = U p(f)exp<i%f>df

frmin

2 is trivial when destroying a twofold symmetry as, e.g., in
(10 Refs.[15,31. Gaussian unitary ensemble statistics, however,

is characteristic of broken time-reversal symmetry in chaotic

systems[13,32] and—although predicted before in Ref.

Analyzing our calculated eigenvalue spectsee, e.g., Fig.

5) yields below x=2 m prominent peaks for orbits with 100 . . .
lengths x~0.59,0.92,1.18,1.92 m. For all three billiard 8oL  Singlets

shapes these peaks appear in the length spectra and are surely a=0°

due to nonchaotic periodic orbits, which do not hit the inner = 6o¢

boundary. The orbit with length 0.59 m is indicated in Fig. 1. — 40f

There are certainly more complicatédut less prominent 20f

orbits of that kind. For a comparison of the spectral proper- 0

ties with the random matrix theory predictions the contribu- 0.0

x (m)

tion of the nonchaotic periodic orbits to the spectrum has to
be removed. Usually, this is done by searching the classical g 5. Length spectrum, i.e., the Fourier transform of the ei-

orb|t§ COfreSpond.'ng to such “_bouncmg ball orbits” and pro-genvalue spectrum according to Eg0), for the singlet spectrum of
ceeding as, e.g., in Ref27,30] in order to reconstruct there the v=0° configuration. The prominent peaksxat 0.59 m and at
contribution to the level density. We, instead, identify peaksx~1.18 m are due to the orbit shown in Fig. 1 and have been
in the length spectrum corresponding to the orbits whichextracted from the data discussed in Fig. 6. Note that we do not
never hit the inner boundary by a mere comparison of th&imply remove the strongest peaks, but those peaks that appear in
length spectra obtained for the three valuesapfremove  all spectra and that show at least one or two repetitions.
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< 04rf 53 . mentalsingle and double eigenfrequencies of @ billiard (his-
02F ¥ == ] tograms, to be compared with the uppermost part of Fig. 3. Degen-
0.0 : : : : : : erate modegdoublet$ and nondegenerate modésinglets both
obey GOE statistics. However, the singlet modes have odd or even
0.8F Singlets + Doublets B . :
«=10° o= 10° parity with respect to the symmetry axes and thus one sees a super-
= 06¢F E ] position of two statistically independent GOEs.
<04} 3 3
o2k I == This confirms theoretical predictiori8] and verifies early
0.0 L L numerically[8] as well as experimentally observed indica-
"0 10 20 30 0 10 20 30 40 tions[10] for this phenomenon.
L L

The aim of the present work was, however, not only to
FIG. 6. Long-range correlations of thmalculatedspectra after  Study the GOE-GUE transition but also to present an appli-
extraction of the influence of nonchaotic periodic orkiisg. 7). ~ cation of a different numerical approach in billiard systems
The resulting long-range correlations are closer to the theoreticdrOf @ prototypical billiard the method desribed in Rfif2]
predictions as in Fig. 4, except for the case0°. Most impor- provides an accurate computation of several thousands of
tantly, the doublets show GOE statistics fex0°, while different elgenvlallues starting from an eigenvalue problem with sev-
anglesa lead to GUE-like spectral correlations. eral millions of unknowns in less than half a day of CPU
time on a standard PC cluster. The main advantages of the

[8]—at first not expected in such a situation, where On|yproposed approach are that there are no restrictions with re-

spatial symmetry properties are changed and time-reversa@ﬁ‘rd fo ;he dge.om.etry ?f thebb|II|ard. M_ort_aover, the; method
invariance is preserved. allows the derivation of a robust posteriorierror estimator

Finally, we compare our numerical with experimental re-fo_r the control of thg accuracy of the computed eigenvalges
sults for @=0°, stemming from a superconducting micro- with regard to the discretization error. The shape of the in-

wave cavity, where spectra in the frequency range fronyestigated billiard is complicate(aturve_d nonconvex bound-
0 to 20 GHz were measured with a spectral resolution ofY: @ h.OIQ' Se"‘?ff’i' thou;ands of e|genv_alges were com-
10 kHz (cf. final remark in Ref[14]). It has been possible to puted with a precision sufficient for the statistical analyses of

separate the experimental spectrum of 389 eigenfrequenci(—?@eCtral fluctuation propertles. From .th|s one can directly
into singlets and doublets with the help of the doublet Sp”t_conclude that the numerical approach is quite general and not

tings as in Ref[14]. The nearest-neighbor-spacings distribu-"miéled to (_:ert?in_ types of Zillilards. we atr)e plar]:ni_ng to Eix'
tions (see Fig. J show a behavior that is consistent with the {€Nd our simulations towards larger numbers of eigenvalues

theoretical expectations and with our numerical studies. Thlgsnd to apply it to different physical problems, such as those

our new numerical results agree well with the ones foundliScussed in Re{:33].
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