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A method for computing large numbers of eigenvalues of self-adjoint elliptic operatorsfJ. Comput. Phys.
184, 321 s2003dg is tested in numerical studies of the spectral properties of quantum billiards. To this extent,
we study a time-reversal invariant quantum billiard of threefold symmetry, that undergoes a transformation in
its symmetry properties fromC3v to C3. Thereby a transition from Gaussian orthogonal to Gaussian unitary
ensemble statistics is observed, verifying earlier experimental indications and theoretical predictions. At the
same time our numerical ansatz is shown to be applicable to arbitrary billiard shapes.
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I. INTRODUCTION

The properties of quantum systems whose classical coun-
terparts possess a chaotic dynamics have been studied exten-
sively in billiards. These model systemsf1g have been inves-
tigated numericallyssee, e.g., the references listed under Ref.
f2gd as well as experimentally, e.g., with microwave cavities
f3–5g. In such analog experiments with superconducting mi-
crowave resonators complete sequences of typically about
103 eigenvalues are obtainedf5g. Their analysis confirmed
the conjecturef6g that chaos manifests itself in certain ge-
neric properties of the quantum spectral fluctuations, which
can be modeled by random matrix theoryf7g. While the
spectral properties of time-reversal invariant systems without
spin and Kramers degeneracies are well described by the
random matrices of the Gaussian orthogonal ensemble
sGOEd, time-reversal violation requires a description by
Gaussian unitary ensemblesGUEd matrices. Following the
predictions by Leyvraz, Schmit, and Seligmanf8g we study a
transition from GOE to GUE statistics in a billiard that un-
dergoes a transformation in its symmetry propertiesf9g from
C3v to C3. The attempt of Ref.f10g to study this phenomenon
experimentally with the help of a normal conducting micro-
wave resonator posed problems, as it was not possible to
assign the correct symmetries to the levels. In corresponding
experiments with superconducting devices such assignments
are possiblef11g, however, parametric deformations of the
shape of a billiard boundary are difficult to realize experi-
mentally. Hence a numerical study of the transition from
GOE to GUE in such systems is of great interest. The billiard
considered in this work is nonconvex and has a hole at its
center, i.e., a second boundary. Thus its numerical treatment
is nontrivial. We chose this problem as a test of a different
numerical technique for computing large numbers of eigen-
values of self-adjoint elliptic operatorsf12g. The method is
based on the finite element method and has almost no limi-
tations with respect to the shape of a billiard and, e.g., allows
the study of bounded domains with holes. Compared to other
methods relying on the finite element method it can distin-

guish between true eigenvalues and the unavoidable spurious
eigenvalues and discretization artefacts. Approximately one
thousand levels were obtained for each symmetry class,
thereby revealing a small deviation of the spectral statistics
from the expected random matrix theory behavior, which can
be understood in terms of classical periodic orbits. In Sec. II
we will shortly review the theory and the results relevant for
the underlying billiard problem. Then we will introduce the
numerical method used for the quantization of the billiard in
Sec. III and finally present the results of the statistical analy-
sis of the calculated eigenvalues in Sec. IV.

II. THEORY

An areaA in which a pointlike particle moves frictionless
along straight paths until it hits the boundary]A, where it is
reflected according to the common law of reflection, is called
a two-dimensional billiard. Whether its classical dynamics is
regular, chaotic, or mixed only depends on the shape of the
billiard. In quantum mechanics a billiard is described by the
stationary Schrödinger equation for a free particle, that can
be written in the form

sD + ki
2dci = 0 s1d

with ki
2=2mEi /"2, wherem is the mass of the particle andci

andEi denote eigenfunctions and eigenenergies, respectively.
The eigenfunctions must satisfy the Dirichlet boundary con-
dition, i.e., uciu]A=0, which together with Eq.s1d defines the
problem to be solved. Equations1d is also referred to as the
scalar Helmholtz equation, as it describes the electromag-
netic fields inside a flat microwave resonator that represents
an analog system for a quantum billiard of corresponding
shapef3g. For comparison with experimental results obtained
in microwave resonators we express the numerical eigenval-
ues ki as electromagnetic eigenfrequenciesf i =vi /2p
=cki /2p, wherec is the speed of light.

We study a billiard of the shape shown in Fig. 1. Its clas-
sical dynamics has turned out to be chaotic, except for a few
periodic orbits that will be discussed below. The billiard has
an outer and an inner boundary which both possess threefold
symmetry. The two boundaries are rotated against each other
by an anglea. For aÞ0 the only symmetry isC3, i.e.,*Electronic address: richter@ikp.tu-darmstadt.de
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”pure” threefold symmetry. Ifa is set to zero, there are mir-
ror symmetries and one speaks ofC3v symmetry. The two
boundaries can be parametrized in polar coordinatessr ,fd
by

routersfd = router
0 f1 + 0.3 coss3fdg s2d

and

r innersfd = r inner
0 h1 + 0.1 cosf3sf + adgj s3d

with router
0 =100.00 mm andr inner

0 =27.27 mm. By tuning the
value of the anglea one can study the effect of the transition
from C3v to C3 on the properties of the spectra. According to
the predictions by Ref.f8g these properties should show a
transition from GOE to GUE statistics. While in similar stud-
ies of GOE-GUE transitionsf13g time-reversal invariance
was broken by magnetic fields, in our case a change of the
shape of the billiard boundary induces the GOE-GUE tran-
sition, as already suggested in Ref.f8g. The authors of Ref.
f8g showed that a chaotic quantum billiard withC3 symmetry
has a spectrum consisting of singlesnondegenerated and
doublesdegenerated eigenvalues. The degeneracies are due to
time-reversal invariance and these so-called Kramers dou-
blets are known to show GUE-like statistical fluctuations,
while the single eigenvalues possess the common GOE prop-
ertiesf8,11,14g. However, in the presence of additional sym-
metry axessC3vd, one also expects GOE statistics for the
degenerate modesf8g. As the nondegenerate modes of aC3v
billiard may have odd or even parity with respect toall of the
three mirror axes, the spectral properties of the single eigen-
values should rather coincide with those of a superposition of
two independent GOE spectrassee also Refs.f15,31gd than
with those of a single GOE spectrumf10g.

III. NUMERICAL SIMULATION

The numerical eigenvalues were obtained with the help of
a method that is described in Ref.f12g in detail and that is
applied here. Many other methods have been developed in
this context. The most common approaches are based on the
scattering approach, the finite element method, the boundary

integral method, and their variantsf16g. The main drawback
of these approaches is the difficulty, if possible at all, to treat
general domains, especially domains with re-entrant corners
or with holes. We tested a numerical methodf12g that can
give complete sequences of large numbers of eigenvalues for
an arbitrarily shaped billiard beginning from the ground state
with a high numerical precision.

A. Numerical method and its properties

The considered method relies on a basis diagonalization.
Localized basis functionsspiecewise polynomial functionsd
are used, thereby yielding sparse matrices. Taking advantage
of that sparsity pattern as well as of the elliptic properties of
the Laplace operator, we solve the resulting generalized ei-
genvalue problem by means of a highly efficient multigrid
method.

The starting point for the numerical calculations is the
discretization of Eq.s1d by means of the finite element
method. This leads to a self-adjoint generalized eigenvalue
problem of the form

Ahci
h = li

hM hci
h, i = 1, . . . ,n, s4d

wherehPR+ is the discretization parameter,AhPRn3n sre-
spectivelyM hPRn3nd represents thestiffnesssrespectively
massd matrix, andli

h is the approximation of the eigenvalue
li =ki

2 ssee, e.g., Ref.f17gd. The sparsity pattern ofAh and
M h leads to memory requirements which behave likeOsnd.
Under usual assumptions on the finite element discretization
ssee Ref.f18gd, the discretization error satisfies

li
h − li ø Cli

lh2sl−1d, s5d

where sl −1d is the polynomial degree of the finite element
shape functions. This error bound indicates that for a given
triangulation the accuracy of the higher eigenvalues deterio-
rates with the coefficientli

l. The accurate determination of a
large number of eigenvalues relies therefore on much finer
discretization of Eq.s1d than for the computation of a few
eigenvalues.

The considered method which is described in Ref.f12g
allows to compute them smallest eigenvalues in Eq.s4d with
the optimal complexity ofOsmnd arithmetic operations and
Osnd memory requirements. Notice that in practicem!n
due to thea priori error estimationsEq. s5dd. Our approach is
based on the symmetric Lanczos methodf19g. The Lanczos
recursion leads to a tridiagonal matrix for which all eigen-
values can be computed by means of a bisection method with
Osmd arithmetic operationsssee, e.g., Ref.f19gd. The rel-
evant eigenvalues of the problem given by Eq.s4d are in the
lower part of the spectrum. In order to obtain the conver-
gence towards these eigenvalues we therefore consider the
following spectral transformation:

fsAh − sM hd−1M hgci
h =

1

li
h − s

ci
h. s6d

The operatorsAh−sM hd−1M h is nonsymmetric but self-
adjoint with regard to the inner productk. , .lM h

. Therefore
the Lanczos method remains valid provided it relies on this
scalar product.

FIG. 1. Shape of the billiard. When rotating the inner boundary
from a=0 to aÞ0, a transition of the symmetry properties from
C3v to C3 is induced. The dashed line shows a periodic classical
orbit that is nonchaotic and that influences the spectral properties of
the quantum system.
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The most time consuming part of the proposed method is
the resolution at each step of the Lanczos iteration of the
linear system involved in Eq.s6d. Due to the elliptic charac-
ter of the considered operator we apply multigrid methods
for the step which allows to solve such linear systems with
CPU and memory costs which behave likeOsnd ssee, e.g.,
Refs. f20,21gd. For increasingm, due to rounding errors, a
loss of global orthogonality leads to so-calledspuriousei-
genvaluesssee, e.g., Ref.f19gd. Beside the multigrid method,
one of the cornerstones of the method is the ability to control
a posteriori the validity of the computed eigenvalues and to
distinguish the true approximated eigenvalues from the dis-
cretization artefacts and the spurious eigenvalues. The treat-
ment of this issue is based on extrapolation techniques which
are described in more detail in Refs.f12,22g.

B. Performed calculations

Our calculations were performed on 64 nodes of the
Heidelberg Linux Cluster SystemsHELICSd. Each node con-
sists of two AMD Athlon 1.4-GHz processors which share
2 gigabytes memory. The size of the eigenvalue problem Eq.
s4d had been set ton=1.5 Mi. for all considered configura-
tions. This allowed to compute accuratelym=3000 eigenval-
ues with regard to the discretization error. The needed CPU
time for each configuration was approximately 6 h.

We have computed spectra of approximately 3000 eigen-
valueshf ij for three different configurations of our billiard
sa=0°, a=1.7°, a=10°d. For the given dimensions of the
billiard, these spectra correspond to the frequency range
from 0 GHz to approximately 54 GHz. Our numerically ob-
tained spectra are indeed composed of singletssnondegener-
ate eigenvaluesd and doubletsstwofold eigenvaluesd. The
relative splitting of the degenerate eigenvaluesDf / f lies be-
tween 10−5 and 10−9. For the topmost levels the numerical
splittings are larger, accordingly we omit the last 300 levels.
Moreover, we skipped the first 600 levels in each spectrum,
since we are interested in semiclassical properties. We uti-
lized the sextremely smalld numerical doublet splitting as a
tool for separating the remaining 2100 levels into subspectra
of singlets and doubletsssimilar to Ref.f14gd. To this end we
studied the percentage of doublets as a function of the as-

sumed maximum splitting of the doubletssFig. 2d. The result
is convincing as we can vary the value taken for the maxi-
mum splitting by several orders of magnitude without chang-
ing the relative fraction of one half for singlets and doublets.
Thus we can separate the eigenvalues in subspectra of the
same size.

IV. STATISTICAL ANALYSIS AND TRANSITION
FROM C3v TO C3

Before analyzing the statistical properties of the eigen-
value sequences we have to unfold the spectra, i.e., to extract
the mean level density and to appropriately rescale the level
spacings. By fitting the Weyl formulaf25g,

NWeylsfd =
Ap

c2 f2 −
U

2c
f + K, s7d

to the ”staircase” function

Nsfd = o
i

Qsf − f id s8d

the coefficientsA, U, andK can be determinedsc denotes the
speed of lightd. We perform this procedure for the subspectra
of singlets and doublets, respectively, thusA andU are not
the area and the perimeter of the billiard, respectively, but
related to them. With the transformation

f i → ei = NWeylsf id s9d

we obtain unfolded spectraheij, that possess a constant mean
eigenvalue spacing rescaled to unity, but still contain the
information on the spectral fluctuation properties.

These spectral fluctuation properties are evaluated on
short scales as well as on long scales. On short scales the
nearest-neighbor-spacings distributionsNNSDd, i.e., the sta-
tistical distributionPssd of the spacingssi =ei+1−ei, is uti-
lized to measure the spectral properties of the unfolded ei-
genvalue sequences. On larger scales we analyze the data
with the help of the Dyson-MehtasD3d statisticsf7,23,24g,
which gives a measure for the spectral correlations in inter-
vals of lengthL. In order to compute theD3 statistics for the
large sets of eigenvalues we use the method given in Ref.
f24g.

Figure 3 shows the NNSDs for the singlet and doublet
spectra of the three billiard configurations studied numeri-
cally. For a=0° the NNSDs show agreement with GOE be-
havior for singlets and doublets. However, in the case of the
singlets the distribution is close to the behavior expected for
a superposition of two independent GOE sequences, which
reflects that the singlets possess odd or even parity. Thus for
a=0° the statistical properties coincide with the predictions
for the C3v case. Fora=10° the NNSD is compatible with
GOE statistics in the case of the singlets and with GUE sta-
tistics in the case of the doublets, as expected. Thea=1.7°
configuration shows a similar behavior, thus we resolve the
slight breaking of the mirror symmetries within our numeri-
cal accuracy.

For the Dyson-Mehta statisticssFig. 4d there is agreement
with the expected behavior fora=0° sC3vd, whereas fora

FIG. 2. Percentage of doublets as a function of the assumed
maximum doublet splitting, shown for thea=0 case. As one can
see it is possible to vary the parameter taken for the maximum
splitting from 10−10 up to 10−5, i.e., by five orders of magnitude,
without changing the singlet and doublet subspectra. This indicates
that the numerical lifting of the degeneracies is extremely small
compared to the smallest eigenvalue spacings.
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=1.7° and fora=10° the results are intermediate in between
the limiting cases expected forC3v andC3 symmetry. How-
ever, these deviations observed for the long-range correla-
tions swhich are often more sensitive with respect to certain
subtle effects than the NNSDd can be understood in terms of
classical periodic orbitsf26,27g. The Fourier transform of the
level densityrsfd=dN/df gives the length spectrumf27–29g,
i.e.,

lsxd = UE
fmin

fmax

rsfdexpSi
2px

c
fDdfU2

. s10d

Analyzing our calculated eigenvalue spectrassee, e.g., Fig.
5d yields below x=2 m prominent peaks for orbits with
lengths x<0.59,0.92,1.18,1.92 m. For all three billiard
shapes these peaks appear in the length spectra and are surely
due to nonchaotic periodic orbits, which do not hit the inner
boundary. The orbit with length 0.59 m is indicated in Fig. 1.
There are certainly more complicatedsbut less prominentd
orbits of that kind. For a comparison of the spectral proper-
ties with the random matrix theory predictions the contribu-
tion of the nonchaotic periodic orbits to the spectrum has to
be removed. Usually, this is done by searching the classical
orbits corresponding to such “bouncing ball orbits” and pro-
ceeding as, e.g., in Refs.f27,30g in order to reconstruct there
contribution to the level density. We, instead, identify peaks
in the length spectrum corresponding to the orbits which
never hit the inner boundary by a mere comparison of the
length spectra obtained for the three values ofa, remove

these peaks from the length spectrum, and then obtain the
fluctuating part of the level density with the bouncing ball
orbits extracted by an inverse Fourier transformationfsee Eq.
s10dg. The resulting statistical properties are—all in all—
closer to the theoretical predictionssFig. 6d. However, the
agreement is slightly worse fora=0°.

We thus see a transition of the statistical properties due to
symmetry breaking: from GOE to GUE in the case of the
doublets and from the two superimposed GOE to a pure
GOE in the case of the singlets. The latter kind of transition
is trivial when destroying a twofold symmetry as, e.g., in
Refs.f15,31g. Gaussian unitary ensemble statistics, however,
is characteristic of broken time-reversal symmetry in chaotic
systems f13,32g and—although predicted before in Ref.

FIG. 3. Nearest-neighbor-spacings distributionssNNSDsd of the
spectracalculatedfor the three different configurations of the bil-
liard shistogramsd. The full lines and the dashed lines mark the
theoretical predictions forC3v and C3 symmetry, respectively. For
all cases the results coincide with the predictions: fora=0° one has
two superimposed GOE spectra for the singlets and a GOE spec-
trum for the doublets. The other configurations show GOE statistics
for the singlets and GUE behavior for the doublets.

FIG. 4. Long-range correlations of thecalculatedspectra for
three different configurations of the billiardsthick linesd. The thin,
full, and dashed lines mark the theoretical predictions forC3v and
C3 symmetry, respectively. For the limiting cases ofa=0° theD3

statistics coincides with the predictions for theC3v case. In thea
=1.7° case and also fora=10+ the statistics deviates from the the-
oretical predictions forC3 symmetry.

FIG. 5. Length spectrum, i.e., the Fourier transform of the ei-
genvalue spectrum according to Eq.s10d, for the singlet spectrum of
the a=0° configuration. The prominent peaks atx<0.59 m and at
x<1.18 m are due to the orbit shown in Fig. 1 and have been
extracted from the data discussed in Fig. 6. Note that we do not
simply remove the strongest peaks, but those peaks that appear in
all spectra and that show at least one or two repetitions.
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f8g—at first not expected in such a situation, where only
spatial symmetry properties are changed and time-reversal
invariance is preserved.

Finally, we compare our numerical with experimental re-
sults for a=0°, stemming from a superconducting micro-
wave cavity, where spectra in the frequency range from
0 to 20 GHz were measured with a spectral resolution of
10 kHz scf. final remark in Ref.f14gd. It has been possible to
separate the experimental spectrum of 389 eigenfrequencies
into singlets and doublets with the help of the doublet split-
tings as in Ref.f14g. The nearest-neighbor-spacings distribu-
tions ssee Fig. 7d show a behavior that is consistent with the
theoretical expectations and with our numerical studies. Thus
our new numerical results agree well with the ones found
experimentally.

V. CONCLUSION

We applied a recently proposed numerical method to
compute spectra of a special chaotic two-dimensional quan-
tum billiard of threefold symmetry. With the help of these
numerical results we observed a transition from GOE to
GUE statistics of the spectral fluctuations when changing the
spatial symmetry of the billiard properties fromC3v to C3.

This confirms theoretical predictionsf8g and verifies early
numerically f8g as well as experimentally observed indica-
tions f10g for this phenomenon.

The aim of the present work was, however, not only to
study the GOE-GUE transition but also to present an appli-
cation of a different numerical approach in billiard systems.
For a prototypical billiard the method desribed in Ref.f12g
provides an accurate computation of several thousands of
eigenvalues starting from an eigenvalue problem with sev-
eral millions of unknowns in less than half a day of CPU
time on a standard PC cluster. The main advantages of the
proposed approach are that there are no restrictions with re-
gard to the geometry of the billiard. Moreover, the method
allows the derivation of a robusta posteriorierror estimator
for the control of the accuracy of the computed eigenvalues
with regard to the discretization error. The shape of the in-
vestigated billiard is complicatedscurved nonconvex bound-
ary, a holed. Several thousands of eigenvalues were com-
puted with a precision sufficient for the statistical analyses of
spectral fluctuation properties. From this one can directly
conclude that the numerical approach is quite general and not
limited to certain types of billiards. We are planning to ex-
tend our simulations towards larger numbers of eigenvalues
and to apply it to different physical problems, such as those
discussed in Ref.f33g.
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FIG. 6. Long-range correlations of thecalculatedspectra after
extraction of the influence of nonchaotic periodic orbitssFig. 1d.
The resulting long-range correlations are closer to the theoretical
predictions as in Fig. 4, except for the casea=0°. Most impor-
tantly, the doublets show GOE statistics fora=0°, while different
anglesa lead to GUE-like spectral correlations.

FIG. 7. Nearest-neighbor-spacings distributions for theexperi-
mentalsingle and double eigenfrequencies of theC3v billiard shis-
togramsd, to be compared with the uppermost part of Fig. 3. Degen-
erate modessdoubletsd and nondegenerate modesssingletsd both
obey GOE statistics. However, the singlet modes have odd or even
parity with respect to the symmetry axes and thus one sees a super-
position of two statistically independent GOEs.
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